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Abstract

Action Schema Networks (ASNets) are neural network archi-
tectures for generalized reactive policies that leverage the re-
lational nature of planning problems represented in (P)PDDL.
An ASNet policy can be learned by imitating the actions se-
lected by a traditional non-learning planner. Even when the
training set consists of only a few small problems, ASNets are
able to solve significantly larger instances within the same do-
main. In this paper, we describe the ASNet planner submitted
to the Learning Track of the International Planning Compe-
tition (IPC23). It closely follows the original implementation
(Toyer et al. 2020), but focuses on solving deterministic plan-
ning problems and employs newer PDDL parsers and eager-
execution-based machine learning frameworks.

1 ASNets
In this section we briefly describe the core ideas of ASNets.
For a complete and comprehensive explanation, we refer the
reader to (Toyer et al. 2020, 2018). Action Schema Networks
(ASNets) attempt to connect the world of automated plan-
ning to deep learning by encoding the relational structure
of factored planning problems into neural networks, where
neurons represent actions and propositions. Connections be-
tween each layer are derived from a graph representation
based on the action schema of the given domain. Because
all problems from the same domain share the same action
schema, weights of the policy network trained on a small
set of problems can be shared with networks instantiated for
larger problems from the domain. Therefore, training with
simpler problems makes solving harder problems with pol-
icy networks possible using the learned parameters.

ASNets are policy networks that take in the current state s
and return a policy πθ(a|s). The current state is encoded as a
feature vector and fed into an alternating sequence of action
and proposition layers. Each action layer consists of action
modules representing actions, and each proposition layer is
formed by proposition modules corresponding to proposi-
tions. The connections between modules are determined by
the relatedness of actions and propositions.

Definition 1 (Relatedness) A proposition p is related to an
action a at position k if the lifted proposition (predicate) is
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the k-th unique predicate in the precondition or effect of the
lifted action (action schema).

A proposition module is connected to an action module
in the next layer, if and only if the underlying action and
proposition are related. Similarly, action modules are con-
nected to related proposition modules in the next layer. Be-
cause the relatedness only depends on predicates and action
schemas, propositions and actions grounded from the same
action schema share the same number of connections.

Each action module at layer l with underlying action a
takes in a vector ula ∈ Rdl

a and outputs another vector
ϕla ∈ Rdh , where dh is the dimension of the hidden vec-
tor. The outputs of related proposition modules p1, ...pM in
the previous layer are vectors ψl−1

p1
, ..., ψl−1

pM
. These vectors,

together with the output vector of the same action module
from the previous layer ϕl−1

a are concatenated to form the
input vector ula, which is then fed into an affine transform
f(W l

a · ula + bla) = ϕla. All actions a from the same ac-
tion schema i in this layer share the same weights and bias,
namely W l

a =W l
i , b

l
a = bli.

Similarly, a proposition module at layer l with underlying
proposition p takes in a vector vlp ∈ Rdl

p and outputs an-
other vector ψl

p ∈ Rdh . Instead of concatenation, the outputs
of related action modules ϕl−1

a1
, ..., ϕl−1

aN
from the previous

layer are grouped by their position of relatedness and then
passed through a max pooling function. Then the outputs of
the pooling functions are concatenated with the output vec-
tor of the same proposition module from the previous layer
ψl−1
p . Finally, the resulting vector vlp is fed into an affine

transform f(W l
p · vlp + blp) = ψl

a. The weights W l
p and bias

blp are shared by all propositions grounded from the same
predicate in this layer.

Because weights are shared between actions grounded
from the same action schema (same for propositions of the
same predicate), the learned weights are generic transforma-
tions that can be applied to the instantiated networks for of
problems of any size.

The input features to the first action layer are encodings
of the current states. For each action module with related
propositions p1, ..., pM , the input vector u1a consists of four
parts: a vector v ∈ {0, 1}M where vi = 1 iff the cor-
responding proposition pi is true in current state; a vector



g ∈ {0, 1}M where gi = 1 iff the proposition appears un-
negated in the goal; a scalar m = 1 if the action is applica-
ble in current state; and finally, an extension part including
features derived from other heuristics. The first half of the
extension part is a one-hot label vector c ∈ {0, 1}3 derived
from LM-cut landmarks (Helmert and Domshlak 2009). The
vector has c1 = 1 iff the action appears as the only action in
at least one landmark; c2 = 1 iff the action appears in a land-
mark containing two or more actions; and c3 = 1 otherwise.
The second half of the extension is an integer recording the
number of times the action has appeared in the plan previ-
ously.

The last layer is also an action layer but with different
outputs. The output dimension of each action module is
one. Specifically, each action module outputs a single scalar
value ϕL+1

a1
, ..., ϕL+1

aN
. The final policy is then the log-scaled

probability distribution:

πθ(ai|s) =
miexp(ϕL+1

ai
)∑N

j=1mjexp(ϕL+1
aj )

.

The model is then trained through imitation learning.
Namely, the model will try to imitate the action selection
policy of a teacher planner. At each training step, the trainer
samples a set of states (so-called “rollouts”) and tries to find
a plan from the states to the goal by choosing actions accord-
ing to the learnt policy πθ. Then the trainer compares these
plans to solutions found by the teacher planner and learns
from their differences. Originally ASNets used SSiPP (Tre-
vizan and Veloso 2014)) for stochastic problems and fast-
downward (Helmert 2006) for deterministic problems as
teachers. The teacher outputs a Q-value Qteach(s, a), which
represents the cost of reaching the goal from state s when
taking action a and acting optimally afterwards. Therefore,
the best action will have the lowest Q-value. Using the Q-
values, the trainer calculates the cross-entropy loss between
the learnt policy πθ and the teacher’s policy. By minimising
the loss, the model learns to make similar decisions as the
teacher planner.

2 Changes to ASNets
In this section we describe our changes and improvements
on the original implementation of ASNets.

2.1 ML Framework
The learning module of the original ASNets is based on Ten-
sorFlow 1.x (TF1) (Abadi 2016), which is a deprecated ML
framework with very different runtime behaviour compared
to the latest frameworks. We updated the implementation
by replacing the learning framework with TensorFlow 2.x
(TF2) (Singh et al. 2020), which has faster and simpler API
and more supported functions. Some major differences be-
tween TF1 and TF2 includes:

• TF1 uses lazy execution and requires manual graph
construction representing the model architecture (Abadi
2016), and then manually compiles the graph by passing
the input and output tensors to a Session. TF2 executes
eagerly (Singh et al. 2020). The construction of the graph

can be done in the background by calling higher-level
API modules.

• TF1 variables are based on implicit global namespaces.
Model variables are stored in the graph even if no Python
variable is pointing to it. TF2 variables are managed the
same way as Python variables, making it faster and more
memory-efficient.

• TF2 provides a well-defined high-level API called Keras
(Gulli and Pal 2017) to easily build and train a neural
network while remaining highly customisable.

We re-implemented the model and model trainer using
the Keras API. The behaviours of the action and proposi-
tion modules are defined in separate classes. Connections
between the modules are defined in a network extended from
the Keras Layer class, which provides a well-defined API
for training and evaluation. The shared weights are man-
aged through a weight manager where weights are defined as
TensorFlow variables with learnable values. Then we used a
Keras Loss Class to implement the loss function described
in (Toyer et al. 2020) to use the class interface in training
directly. Finally, we rewrote the trainer with the new mod-
els and components while keeping the data generation and
training mechanism unchanged.

2.2 Training
Originally ASNets were designed for solving Stochastic
Shortest Path problems (SSP) (Bertsekas and Tsitsiklis
1996). Because we only consider deterministic domains in
this competition, we simplified and optimised the training
for the deterministic setting.

First, for the teacher planner, we followed the configu-
ration of the deterministic version of the original ASNets,
which used fast-downward (Helmert 2006) in solving deter-
ministic problems. In other words, we use fast-downward
to compute the teacher’s policy Qteach(s, a) for state s and
action a during the training process. And for the solver al-
gorithm used by fast-downward, we chose the LAMA-first
algorithm (Richter and Westphal 2010), whereas the orig-
inal version of ASNets used A-star with LM-cut (Helmert
and Domshlak 2011). In stochastic problems, the policy is
generally represented by a probability distribution function,
while in deterministic settings, we simply take the best ac-
tion. Therefore, the Q-value computed by the teacher be-
comes a one-hot label indicating which action is the optimal
selection and rejecting all other actions.

Because ASNets can be trained on small problems and
then reuse the same learnt weights for solving larger prob-
lems, it is unnecessary to train the model on large problems
directly. However, in this competition, we don’t know the
domains and sizes of problems in advance. Hence we cannot
set the boundary between “easy” and “hard” problems1. Be-
cause generating training data for the model requires solving
many sub-problems (namely, finding plans from some inter-
mediate states to the goal), if a training problem is too hard

1The competition provides problems in increasing order of dif-
ficulty



to solve, the learning script might waste too much time solv-
ing these sub-problems instead of training the model. There-
fore, the program has to decide by itself whether to use the
given training problem or not.

We set the timeout threshold of the fast-downward solver
to 1 minute. In other words, if the teacher fails to find a plan
for the given state within one minute, it will skip the problem
and train the model with data from other problems. Besides,
we train the model in an incremental manner: we first train
the model with only the two easiest problems. The learnt
policy is used as a basic planner. Then we append one more
problem to the training set and train a new model. We repeat
this process until all problems are in the training set or the
teacher fails to return plans for all new problems. We record
the problems that failed to be solved by the planner and then
try to train the model again with fewer rollouts per step and
a longer time limit (2 minutes) for the teacher planner. The
incremental training set strategy guarantees we can have a
benchmark model before the trainer runs out of memory or
fails to learn from harder problems.

We used a stepped decreasing learning rate starting from
1e−3. The learning rate drops to 1e−4 after 500 steps and
further drops to 1e−5 after 1000 steps. The L1 regularisation
parameter is set to 0, and the L2 regularisation parameter is
set to 2e−4. The model has 3 action layers and 2 proposition
layers with hidden vector size 16 and dropout rate 0.1. We
save the trained model after every epoch if the evaluation
result is better than the previous one.

2.3 Evaluation

The original ASNets select an action to execute in a state
s by identifying the action with the highest probability in
their last layer, i.e., argmaxa∈A(s) π

θ(a|s), breaking ties
arbitrarily. While effective in practice, an ASNet does not
guarantee that the generated plans will be loop-free. For ex-
ample, in a Blocks World problem, the argmax strategy
cannot guarantee that picking up block A from the table,
placing A back on the table, and repeating the cycle indef-
initely will never happen. The solution proposed in (Toyer
et al. 2020) is to sample the action to be executed in s ac-
cording to πθ(·|s), guaranteeing that loops will be eventu-
ally broken; however, this method performs worse than the
argmax strategy in practice because the probability of sam-
pling an unfavorable action is higher than the probability of
the argmax strategy resulting in a loop. To address these is-
sues, we use a new execution method based on the argmax
strategy that ensures loop-free execution while preserving its
performance in the absence of loops. To do so, the planner
keeps track of the set E(s) of actions previously executed
in each visited state s. An action for state s is then chosen
according to argmaxa∈A(s)\E(s) π

θ(a|s), i.e., we select the
highest probability action that has not yet been executed. If
there are no applicable actions remaining, i.e., E(s) equals
A(s), the planner returns a failure to find a plan. This strat-
egy behaves as the argmax strategy until a loop is detected,
in which case it systematically executes different actions
from highest to lowest probability according to πθ(·|s).

3 Issues and Solutions
The outcomes of the competition significantly deviated from
our expectations and our own experiment results. In the orig-
inal paper, the model’s performance surpasses LAMA-first
on blocksworld after sufficient training. Although we ac-
knowledge that the model might not perform as well as the
original paper due to limited training time and resources, and
a different training set, we did not anticipate the planner fail-
ing in multiple domains. Therefore, we thoroughly checked
our implementation and training/evaluation pipeline. After
careful inspection and validation, we identified three major
issues that led to the unexpected poor performance:

1. There was a bug in the implementation of the loop-free
execution strategy mentioned in Section 2.3. The origi-
nal approach utilized a dictionary that stored states and
the number of times they appeared in the plan as string-
integer pairs. The string representation of states was used
as the dictionary keys. The loop-free execution strat-
egy ensured that actions were not repeated in the same
state, which prevented loops in the plan. However, some
states were incorrectly mapped to the same string while
converting states to string representations. As a result,
the planner treated different states as if they were the
same and employed an unnecessary loop-breaking strat-
egy. Consequently, the plan generated was not as good
as it could be and in some cases, no valid solution was
found.

2. One of the pre-processing steps was to quickly find a
superset of all grounded actions applicable to a given
problem. This reachability analysis method did not work
correctly when the problem contained negative precondi-
tions. As a result, it failed to return all reachable actions,
which caused an error when the fast-downward planner
returned these missing actions.

3. As we mentioned in Section 1, the encoding of actions
contained an extension part based on LM-cut landmarks.
These values were computed using the SSIPP. For this
reason, SSIPP was instantiated for each problem. How-
ever, the SSIPP planner had an upper bound on the num-
ber of atoms in the problem. This upper bound was set
to 16384 by default, which was much lower than the up-
per bound of atoms in the problems provided. Therefore,
when the input problem became large, the planner failed
to parse the problem and quit without solving the prob-
lem.

The competition’s planner performs poorly due to a com-
bination of these issues. However, it’s important to note that
these problems are not connected to the methodology or core
concepts underlying ASNets. To obtain an unbiased evalu-
ation of ASNets we need to address these issues first. This
was achieved by the following changes:

1. We fixed the string representation of states. The states
are now represented as a string of tuples of propositions.
This ensures that no different states are mapped to the
same key. The trade-off is that this method may result in
a long key string for complex problems, leading to higher
memory usage.



Domain #Train Agile Scores Quality Scores Coverage
blocksworld 30 22.25 27.66 37
childsnack 12 0 0 0
childsnack-s 8 2.67 2.11 3
ferry 40 32.32 41.66 48
floortile 20 15.0 19.13 24
miconic 52 35.76 44.27 61
rovers 16 4.5 4.33 6
satellite 32 29.66 38.19 45
sokoban 13 1.53 1.04 2
spanner 31 9.97 10.0 10
transport 50 20.93 28.06 35
overall(ex. childsnack-s) 297 171.92 214.34 268

Table 1: The column “#Train” indicates the number of problems that the planner is trained on before reaching the time limit.
Agile scores and quality scores are computed using the same scripts from the competition. Coverage is the number of problems
solved among the 90 testing problems per domain. “childsnack-s” is the planner trained with the same settings as others but
ignores the first 12 training problems.

2. We fixed the bug in the reachability algorithm. Due to the
time limit in the competition, we optimised for a faster
approximation of a set of applicable actions that returns
more false positives in domains with negative precondi-
tions.

3. We increased the upper bound of atoms to the maximum
acceptable range of 65535.

After having resolved the issues, we re-evaluated the plan-
ner’s performance under the same time and resource con-
straints as in the competition, namely training with a single-
core CPU, 32 GiB memory, and 24 hours, and testing with a
single-core CPU, 8 GiB memory, and 0.5 hours.

In order to determine the agile and quality scores, we uti-
lized the scripts and data provided by the competition. The
experiment outcomes are presented in Table 1.

4 Ablation Analysis
In this section, we analyse the competition results after re-
evaluation of the model’s performance. First of all, it’s im-
portant to note that the planners used by participants in the
learning track have different “learning components.” Huzar
learned a Graph Neural Network that helps the planner
shrink the set of available actions and then solve the problem
using LAMA; GOFAI learned to find partial grounding of
problems and then solve the problem with a portfolio; Vanir
learns a hierarchical policy, which is a rooted tree with each
node representing a decomposition of parent problems and
sketch rules (Drexler, Seipp, and Geffner 2023). Muninn, the
most similar competition entry to our planner, learned a neu-
ral network policy by optimising two value functions. It is
expected that ASNets is no match for planner portfolios or
variants of LAMA. After analysing the logs of learning and
planning for each domain, we offer the following observa-
tions:

Improved Testing Scores After fixing the pipeline, the re-
sults significantly improved in almost all domains. The total
coverage increased from 40 to 268 and the quality score rose
from 29 to 214. The only domain for which results did not

improve is childsnack, where we still cannot solve any prob-
lem, due to insufficient training time.

Insufficient Training Time The planner faces a signifi-
cant issue with limited time and resources, which hinders its
ability to exploit and fully learn from the training set. Unfor-
tunately, due to the 24-hour training time limit, the trainer
times out on all domains before completing the full train-
ing set. As shown in Table 1, the trainer can only utilize
a maximum of 52 problems in the miconic domain, and in
the worst-case scenario, it can only use 12 problems in the
childsnack domain. As expected, the planner’s performance
on childsnack is the worst. One observation is that the first
12 problems of childsnack have at most 2 “children”. How-
ever, even the easiest problem in the test set (easy/p01.pddl)
has four children sitting on two tables. The planner failed
to learn enough information to generalise to such cases. To
demonstrate that the planner can learn useful domain knowl-
edge given enough training examples in the domain, we
trained the planner on childsnack with the same settings, but
we started training from the 13th problem in the training set.
As the planner now has more information regarding the do-
main, we immediately saw an improvement in the quality of
the resulting planner, as shown in Table 1. Additionally, we
note that the original implementation of ASNets (Toyer et al.
2020) is optimized for multi-core processing. Unfortunately,
since we only had a single-core CPU in this competition, the
learner was operating in a sub-optimal situation, adversely
impacting the training process and making it notably slower.

Overfitting training strategy As described in section 2.2,
the training strategy used by the planner iteratively adds new
problems to the training set. This approach ensures that the
planner retains knowledge from simpler problems while also
learning new knowledge from more complex ones. To check
this, we validated the domain knowledge by solving train-
ing set problems using the learnt domain knowledge. And it
turns out the planner can always solve all the trained prob-
lems, regardless of its performance in the testing set. This
observation potentially indicates that the model is overfit-



ted. Besides, the training time per epoch increases as the
total number of problems increases. As a result, when we
retrain the model with a new problem and all previously
seen problems, the trainer spent a significant amount of time
overfitting to seen problems. To illustrate this point, we con-
ducted an experiment in which we trained the planner on
blocksworld using the same settings but extended the train-
ing time to 3 days. However, we could only increase the
number of problems the planner was trained on from 30 to
34. This result demonstrated that overfitting was more sig-
nificant than we had anticipated. Therefore, developing a
better training strategy for the planner to work on most of
the trainable problems is necessary.
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