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Abstract

The main idea behind the GOFAI planner is to use partial
grounding to avoid building the full SAS+ planning task be-
fore looking for a plan. GOFAI is implemented in Fast Down-
ward (FD) and uses its search component without changes.
The key component of GOFAI is FD’s translator, which in-
stantiates the given PDDL planning task into a fully grounded
SAS+ representation. We adapt this part by learning, for a
specific domain, which actions of a task are most relevant to
find a plan. With this, we focus the grounding process onto
these actions and avoid grounding actions that are predicted
to be less relevant. We employ several different approaches
to learn action-relevance predictors and pick the best such
model using the algorithm configuration tool SMAC. We also
let SMAC select the search configuration of FD from a prede-
fined set that best interacts with the partial grounding model.

Planner Description
Most state-of-the-art classical planners translate a given
PDDL planning task to a fully grounded representation be-
fore even starting to look for a plan (Helmert 2006; Ramirez,
Lipovetzky, and Muise 2015; Froleyks, Balyo, and Schreiber
2019). In GOFAI we build on our initial work on partial
grounding that avoids constructing the full SAS+ represen-
tation of the PDDL input task (Gnad et al. 2019).

From Gnad et al. (2019) we adopt the learning of models
based on relation rule features using off-the-shelf machine
learning (ML) techniques such as linear regression or sup-
port vector machines from the SciKit Learn library1. We also
adopt the learning of relational tree using the Aleph tool2.
With both approaches, we learn to predict the relevance of
actions that are about to be grounded. We rank these actions
according to their relevance, as shown in Algorithm 1, which
instantiates the priority queue in line 11. The partial ground-
ing terminates if (at least) the goal is reachable under delete-
relaxation semantics (line 4: G ⊆ F ) and some stopping
condition triggers, or when all actions have been grounded.

As stopping conditions, we only use fairly simple crite-
ria based on the number of actions grounded when the goal
becomes relaxed reachable. We then either terminate imme-
diately, or ground an additional x% of actions.

1See https://scikit-learn.org/.
2See https://www.cs.ox.ac.uk/activities/programinduction/

Aleph/aleph.html.

Algorithm 1: Partial grounding algorithm.

Input: A lifted task ΠPDDL = (P,A,ΣC ,ΣO, I, G)
Output: A STRIPS task Π = (F,O, I,G)

1 q ← I ;
2 F ← ∅ ; // Processed facts
3 O ← ∅ ; // Processed operators
4 while ¬(q.empty() ∨G ⊆ F ) ∧ ¬Stop do
5 if q.containsFact() then
6 f ← q.popFact() ;
7 F ← F ∪ {f} ;
8 for o ̸∈ O ∧ pre(o) ⊆ F do
9 q.insert(o) ;

10 else
11 o← q.popHighRelevanceOperator() ;
12 O ← O ∪ {o} ;
13 for f ̸∈ F ∧ f ∈ add(o) do
14 q.insert(f ) ;
15 return (F,O, I,G)

In addition to the models that predict the action relevance,
we also try to learn special rules that identify actions that
should always, respectively never, be grounded. The latter
actions will be completely discarded. Actions that should
always be grounded get a maximum relevance score and ad-
ditionally trigger the stopping condition: as long as there are
still such actions in the queue, the grounding continues. We
refer to these rules as hard rules, as they do not only give a
relevance score to actions. The hard rules are obtained us-
ing Aleph by querying for expressions that exactly separate
useful from non-useful actions on a set of training instances.

The overall training of models is wrapped into the algo-
rithm configuration tool SMAC (Hutter, Hoos, and Leyton-
Brown 2011). We train all from a predefined set of models
in the same way as in done in Gnad et al. (2019), and then let
SMAC decide on which kind of priority queue is used (see
Gnad et al. (2019) for details), and which stopping condition
to use. Furthermore, SMAC optimizes the set of hard rules
that should be used during grounding, as these rules are ob-
tained from a subset of the training instances, so might not
generalize. The SMAC optimization uses a disjoint set of
instances, so can possible identify issues.

Moreover, we provide a list of search configurations to



SMAC and let it chose the best one for a given domain and
partial-grounding model. This list consists of the LAMA-
first configuration (Richter and Westphal 2010) and all con-
figurations that are part of the Fast Downward Stone Soup
portfolio from IPC 2018 (Seipp and Röger 2018).

We extend the standard preprocessing of Fast Down-
ward with the h2-based task simplification by Alcázar and
Torralba (2015), which removes irrelevant and unreachable
facts and actions from the task before invoking the search.

Partial grounding is an incomplete approach to plan-
ning in general. Hence, we adopt the incremental grounding
scheme of Gnad et al. (2019), which grounds more actions
in later iterations if the search fails to find a plan. For ev-
ery search iteration, we limit the time to 5min. If the search
fails, the next round of partial-grounding instantiates 10, 000
additional actions. The outcome of the SMAC optimization
can be a set of planner configurations. We equally distribute
25min across these configurations and let a standard LAMA
configuration (with full grounding) run for the last 5min.

Multi-Core Track In the multi-core track, we parallelize
the generation of training data, i.e., solving the training in-
stances, as well as the SMAC optimization. The planning
phase still only uses a single core.
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