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Abstract

We present HUZAR, a participant of the learning track of the
International Planning Competition 2023. HUZAR focuses
on simplifying the planning task by predicting a set of useful
actions with Graph Neural Networks before the search starts.

Introduction

An important challenge for solving planning tasks is that the
number of possible actions grows with the number of ob-
jects that are being dealt with, even though most of those ac-
tions will not be used in a plan. Therefore, planning can be
more efficient if one focuses on a sub-set of relevant actions
that are sufficient to find a plan. While most approaches that
remove irrelevant actions (Haslum 2007; Haslum, Helmert,
and Jonssson 2013; Alcázar and Torralba 2015; Torralba and
Kissmann 2015; Fišer, Torralba, and Shleyfman 2019) focus
on identifying a set of actions that can be removed with-
out compromising plan solvability and optimallity, one can
also discard actions more greedily (Nebel, Dimopoulos, and
Koehler 1997; Heusner et al. 2014). If a plan exists with the
remaining actions, it can be found more efficiently.

HUZAR is inspired on partial grounding ap-
proaches (Gnad et al. 2019), which used Machine Learning
methods to predict what actions to ground. However,
HUZAR relies on fully grounding the task, and analyzing
the entire grounded task in order to decide what actions are
truly relevant. HUZAR aims to leverage the capabilities of
Graph Neural Networks (GNNs) (Scarselli et al. 2009) to
predict the set of useful actions within a given task. Due to
their ability to process data represented as a graph, GNNs
have found diverse applications, including the modelling of
social networks (Wu et al. 2020), physical systems in natural
science (Sanchez-Gonzalez et al. 2018), and protein-protein
interface networks (Fout et al. 2017).

This work is an outcome of the project undertaken by our
study group with the guidance of the supervisor during the
10th semester of the Computer Science program at Aalborg
University. The primary objective of this project was to de-
velop an advanced tool capable of improving any automated
planner by using a preprocessor that leverages the cutting-
edge technology of GNNs.

Approach
Graph Representation
We consider planning tasks in the SAS+ formal-
ism (Bäckström and Nebel 1995), which can be automat-
ically obtained from the PDDL representation (Helmert
2009). We represent each planning task as a Problem De-
scription Graph (PDG) (Pochter, Zohar, and Rosenschein
2011). The PDG has three types of nodes: variable, value,
and action nodes.

The graph contains edges connecting each variable to
all its values, as well as each value to each action where
the value appears in the precondition or the effect. Unlike
Pochter, Zohar, and Rosenschein, who considered two sep-
arate nodes for the preconditions and effects of each action,
we have a single node per action and distinguish precondi-
tions and effects by using different types of edges (Shleyf-
man et al. 2015).

Value nodes contain two Boolean features that specify if
the corresponding atom belongs to the initial state and/or the
goal, respectively. The framework is easily extensible with
other types of features, but this is left as future work.

The goal is to predict what actions are useful. Therefore,
each action node contains a target label, specifying whether
it is a useful action for achieving the goal from the initial
state or not. The GNN will obtain a representation for each
node, that will be used to predict each target class.

Learning Phase
In the learning phase, HUZAR, takes as input a set of plan-
ning tasks for training. The output knowledge file consists
of a GNN classifier that predicts whether a grounded action
is useful for solving a given planning task.

First, we obtain training data by solving the planning tasks
provided as input. For that, we use Downward Lab (Seipp
et al. 2017) to run the LAMA (Richter and Westphal 2010)
planner to obtain a plan for each task, as well as a symbolic
search planner (Torralba et al. 2017) that computes the set
of actions in all optimal plans. With this, we can create a
labelled dataset consisting of the PDG of all the training in-
stances and labelling nodes corresponding to “useful” ac-
tions.

For training and running GNNs, we use the Pytorch-
geometric library (Fey and Lenssen 2019), using message-



passing GNNs (Bronstein et al. 2021). Our training method
has several hyperparameters that can be tuned. First of all,
the architecture of the neural network, such as number of
layers, neurons per layer, and learning rate. Second, the def-
inition of what actions are labelled as “useful”. Our default
configuration considers an action useful iff it belongs to
some optimal plan of the task. However, we also considered
an alternative, where useful actions are those that are used
in the plan found by LAMA.

The decision of what NN architecture has better perfor-
mance, as well as well as what is the best criteria to decide
whether an action is useful, may differ for different domains.
Therefore, we set the value of these parameters by an hyper-
parameter optimization tool, SMAC (Lindauer et al. 2022).
SMAC is a versatile tool, allowing to automatically search
for parameter configurations that maximize/minimize any
optimization criteria. One could optimize for training loss,
or classification performance. However, that ignores the im-
pact that the reduction has on the planner’s performance. In-
stead, we optimize for reducing the number of actions that
are kept after our preprocessing, giving a very high penalty
if the task is not solved.

The learning phase concludes with the generation of the
knowledge file, which contains the best classifier found by
the SMAC optimization.

Planning Phase

In the planning phase, HUZAR leverages the knowledge
file in order to simplify the planning task, by removing ac-
tions that are classified as not useful. HUZAR’s planning
engine is implemented on top of Scorpion (Seipp 2018), a
variant of the Fast Downward Planning System (Helmert
2006) that implements, which had already integrated the h2-
preprocessor (Alcázar and Torralba 2015).

Then HUZAR’s preprocessor removes actions deemed
not useful. First, it grounds the planning task into a SAS+

task (Helmert 2009), and generates the corresponding PDG.
Then, we run the GNN classifier to obtain a value between
0 and 1 for each action. We choose a threshold T and dis-
card all actions with GNN (a) < T . The preprocessor can
also be configured to choose T such that at least X% of the
actions are not removed. We start with greedier variants that
may remove up to 90% of the actions. If, after removing the
actions the planner fails to find a plan (e.g. because no plan
is possible with the remaining actions), then we repeat the
process, increasing the percentage of actions that should be
kept.

After applying the filter of the GNN, we run the h2 pre-
processor (Alcázar and Torralba 2015), which further re-
moves actions from the planning task. Specifically, it re-
moves actions that are only applicable on unreachable states
and/or result in dead-end states. This also removes unreach-
able facts and irrelevant variables so that the task only con-
tains variables that can still be modified by the remaining
actions.

After the task has been grounded and simplified, we solve
it using LAMA (Richter and Westphal 2010).

Conclusion
In conclusion, HUZAR is a new planner that simplifies the
planning task by learning to remove unnecessary actions. We
show how, by encoding the task as a PDG, one can leverage
Graph Neural Networks to classify actions as useful or un-
necessary.
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