
Muninn

Simon Ståhlberg1, Blai Bonet2, Hector Geffner3,1
1Linköping University, Linköping, Sweden

2Universitat Pompeu Fabra, Spain
3RWTH Aachen University, Germany

simon.stahlberg@liu.se, bonetblai@gmail.com, hector.geffner@ml.rwth-aachen.de

Abstract
Our planner, Muninn, uses a message-passing neural network
model to learn and optimize value functions for a given do-
main. Muninn employs a two-step learning process to first
obtain an optimal value function and then a suboptimal value
function. Initially, the model learns an optimal value func-
tion that represents the fewest actions needed to reach a goal
state. Subsequently, the value function is fine-tuned to gen-
erate suboptimal solutions when used with a greedy policy.
The purpose of the second step is to tackle domains that are
intractable in the optimal case but not in the suboptimal case.
The final learned value function is used in two ways. First,
it is employed in a ”hill-climbing”-like search algorithm that
can exploit the learned model if it encodes a weak (or strong)
policy. Second, it serves as a heuristic function within an A*
search algorithm, used as a fallback when the learned model
does not encode any policy.

Overview
Muninn is a planner that uses a message-passing neural net-
work architecture to learn a value function for a given plan-
ning domain. In our previous work (Ståhlberg, Bonet, and
Geffner 2022a,b), we learned general policies by training
value functions and employing a greedy policy based on
them. However, although not formally proven, it is likely
that our model’s expressive power is limited by C2 (two-
variable first-order logic with counting quantifiers). If the
planning domain necessitates features that cannot be cap-
tured by C2, the greedy policy based on the learned value
function will fail to generalize to larger instances. Moreover,
there is a possibility that the learned value function cannot
even solve the training instances. Consequently, the inclu-
sion of search algorithms becomes crucial to compensate for
this limitation in expressive power.

To learn a value function, Muninn follows a two-step
learning process, dedicating an equal amount of time to each
step. Initially, the model learns an optimal value function
that represents the minimum number of actions required to
reach a goal state. We learn this value function in a super-
vised fashion by expanding the entire reachable state space
and computing the value for each state. However, the lack
of expressive power is not the only scenario where policies
based on learned value functions fail. In cases where finding
optimal solutions is NP-hard but finding suboptimal solu-
tions is tractable, it is preferable to learn a value function

that yields suboptimal plans when used as a greedy pol-
icy. Thus, in the second step, Muninn fine-tunes the opti-
mal value function to generate suboptimal solutions when
used as a greedy policy. While it is possible to directly learn
suboptimal policies, it generally takes longer to converge.
Hence, the first step aims to speed up learning process.

The learned value function in Muninn is used in two ways,
dedicating an equal amount of time to each way. Firstly, it
is used in a ”hill-climbing”-like search algorithm, where A*
is used from the current state to identify another state where
the value is significantly better than the current value. At this
point, the search is reset to avoid maintaining a large open
list. This approach tends to find solutions quickly but some-
times yields plans of lower quality. Secondly, the learned
value function acts as a heuristic function within an A*
search algorithm, which discovers solutions of high quality
but at the cost of increased time and memory consumption.
We note that we use our value function as a heuristic, but it
is not admissible. In other words, even when used with A*
algorithm, it does not guarantee optimal solutions.

For detailed information on learning an optimal value
function through supervised learning, we kindly direct the
reader to our ICAPS paper (Ståhlberg, Bonet, and Geffner
2022a), where our architecture was originally introduced.
Additionally, we invite the reader to explore our KR pa-
per (Ståhlberg, Bonet, and Geffner 2022b) for insights into
how we learn suboptimal policies using value functions.
This paper also delves into the trade-off between optimal-
ity and generality for NP-hard domains. In these papers,
we refrain from incorporating the learned value functions
into search algorithms. Our aim was to obtain crisp results,
avoiding any potential masking of flaws in the learned mod-
els by the search algorithm. However, in a competitive en-
vironment, the goal is to maximize coverage; thus, using
search algorithms is very useful. Furthermore, since we only
need the state and the goal to evaluate the heuristic value for
each state, we use a lifted planner (Ståhlberg 2023) to avoid
grounding the action schemas as a preprocessing step.



Analysis
We take a closer look at the final results from the competi-
tion, and outline the configuration that we ended up using.

Environment
The learner and planner was run on a single core from an
Intel Xeon Gold 6130 (no GPU) with 32 GB of memory for
24 hours and 30 minutes, respectively. We want to note that
the amount of computation available is unlikely to be suffi-
cient for learning a good value function using our method.
This is because we cannot exploit parallelism with a GPU or
multiple cores, which much of deep learning relies on.

Hyperparameters
In this competition, we used the following hyperparameters:

• Embedding Size: The chosen embedding size for each
object was set at k = 48. The selection of this embedding
size ensures a balanced trade-off between computational
complexity and the richness of representation.

• Optimal: The amount of time allocated to learn an opti-
mal value function was 11 hours.

• Suboptimal: The amount of time allocated to learn an
suboptimal value function was 11.5 hours.

• Dataset: We expanded instances with up to 10 million
states and up to 16 GB of memory for training and vali-
dation data. In other words, we reserved 16 GB of mem-
ory exclusively for the training process, to ensure it is not
terminated due to memory constraints.

We want to note that some of these hyperparameters (and
planner implementation) have been chosen with this partic-
ular environment in mind.

Learning
The logs made available are trimmed to save space, which
means we cannot track the training and validation loss over
time. This only lets us see if the final loss was near 0.0
when learning a suboptimal value function. But we cannot
tell if: (1) the training settled at some loss above zero; or
(2) we could not learn an optimal value function but man-
aged to learn an suboptimal one. Also, we can only see the
last model’s validation loss, not the best one’s. Keep in mind
that both training and validation losses fluctate during train-
ing, so the end results might not show the whole picture.
We interpret a big difference between validation and train-
ing loss that the learned model does not generalize well.

Table 1 shows our understanding of the logs. First of all,
the organizers did a great job creating small instances that
can be fully expanded and stored in memory. The domain
with the least expanded instances in the training and valida-
tion set is Rovers with 16 instances, this should provide am-
ple data to learn from. In some cases, the logs were cut short,
so we could not see the exact number of expanded instances.
The (in)equalities in the table show whether this information
was trimmed. Based on our experience, the validation loss
should be below 0.0001 for a model to function correctly

as a policy.1 However, it seems no model hit that mark. But
since we use these models as part of heuristic search, we are
a bit more flexible. We consider a model to have converged
if the training loss is about 0.0005 and it is generalizing well
if the validation loss is 0.005 or lower. However, this could
be a very lenient view, and with more computing power, we
should get even lower losses.

Planning
We used our learned models in two modes: as a weak policy,
where we use it to greedily find partial plans to states that
have a lower value than the starting state; and as a heuristic
for A*.

Weak Policy. If the learned model encodes a strong pol-
icy for the domain, we can greedily follow its suggestions to
solve the problem. In this scenario, each partial plan consists
of a single action. However, to account for inadequate train-
ing or a lack of expressive power, we perform an A* search
until we find a state with a lower value. This is repeated until
a goal state is found.

A* Search. If the learned model cannot be used even as
a weak policy, we can use it as a heuristic function for A*
search by simply interpreting the learned value function as a
heuristic function.

Coverage. Table 1 shows that the learned value functions
can serve as both a weak policy (and possibly a strong pol-
icy). This is because using A* search did not make a big dif-
ference in results for any domain. Moreover, this approach
was needed to solve certain instances within the resource
limits. Specifically, the weak policy managed to solve 225
instances, while A* only solved 185. Out of all the instances,
there were just 3 that A* solved which the weak policy could
not. The downside to the weak policy is that it might give so-
lutions of lower quality. Even though A* could potentially
offer higher quality solutions, in the experiments, this did
not happen very often.

Discussion
Drawing conclusions from the experimental results is diffi-
cult because the models were trained on just one CPU core.
If more computing power had been available, the models
might have been significantly more informative. This could
have led to a more focused search with A*. Moreover, test-
ing the model on larger instances without a GPU is often
slow. For instance, for the Sokoban instance ”easy-p13,” we
found a plan 25 steps long (with a quality of 0.92) by ex-
panding just 117 states. However, it took 8.3 seconds to
evaluate the 393 generated states. So, for this instance, the
learned model was informative, but it was time-consuming
to evaluate because it did not run on a GPU. That said, even
if the learned models were perfect, they might also simply
be too expensive to use for larger instances.

1This low loss is due to the way the loss function is set up: it
uses an inequality.



Domain # Exp. Converged Generalized Weak Policy Coverage A* Coverage Total Coverage

Blocks = 30 ✓ ✓ 39 24 39
Childsnack = 27 × × 11 9 11
Ferry ≥ 32 × × 42 32 42
Floortile = 17 × × 0 0 0
Miconic ≥ 24 × × 30 30 30
Rover = 16 ✓ × 15 9 15
Satellite = 21 ✓ × 15 16 16
Sokoban ≥ 32 × × 24 26 26
Spanner ≥ 25 ✓ ✓ 32 30 32
Transport = 20 × × 17 13 17

Total ≥ 244 - - 225 189 228

Table 1: The column ”# Exp.” indicates the number of instances expanded during learning. The ”Converged” and ”Generalized”
columns show if the training appeared to have settled and if the model seemed likely to generalize well, based on validation
loss. The ”Weak Policy Coverage” and ”A* Coverage” columns show how many instances were solved using the learned model
in each method, while ”Total Coverage” indicates the overall number of instances solved.

Acknowledgements
Big thanks to Jendrik Seipp and Javier Segovia-Aguas for
organizing the IPC learning track. Your hard work made the
event a success, and we truly appreciate your dedication to
the planning community. Great job, and thank you!

References
Ståhlberg, S. 2023. Lifted Successor Generation by Maxi-
mum Clique Enumeration. In Proceedings of the 26th Euro-
pean Conference on Artificial Intelligence (ECAI 2023).
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In Proceedings of
the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2022, Singapore (virtual),
June 13-24, 2022, 629–637.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
Generalized Policies without Supervision Using GNNs. In
Proceedings of the 19th International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR 2022,
Haifa, Israel. July 31 - August 5, 2022.


