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Abstract

Progressive Generalized Planner (PGP) is a Best-First
Search (BFS) algorithm that searches in the solution space
of planning programs as Random-Access Machines, with at
most |Z| pointers and n program lines. The contributions
of this generalized planner are twofold. On the one hand, it
adapts the landmark counting heuristic to generalize plan-
ning including the novel concept of pointer landmarks. On
the other hand, it progressively processes the set of training
instances, which describe the generalized planning problem,
proposing a candidate solution to them and validating it over
the rest of instances. A candidate solution is considered a
generalized plan iff is valid for all training instances, other-
wise the first instance where it fails is included as a counter-
example for the next iteration.

Generalized Planning
Generalized planning (GP) addresses the computation of
algorithmic solutions that are valid for a set of classical
planning instances from a given domain (Jiménez, Segovia-
Aguas, and Jonsson 2019). In the worst case, each classical
planning instance may require a completely different solu-
tion but in practice, many planning domains are known to
have polynomial algorithmic solutions (Helmert 2006; Fern,
Khardon, and Tadepalli 2011). GP is however a challeng-
ing computation task; specifying an algorithmic solution for
a set of classical planning instances often requires features
that are not explicitly represented in those instances and
hence, they must be discovered (Bonet and Geffner 2021).

A GP problem P is formalized as a finite and non-empty
set of T classical planning instances It, s.t. 1 ≤ t ≤ T ,
from a given domain D, i.e. P = {P1, . . . , PT } where P1 =
⟨D, I1⟩, . . . , PT = ⟨D, IT ⟩.

A solution to a GP problem is named a generalized plan
Π, and it is a valid solution iff for every for every classical
planning instance Pt ∈ P , the sequential plan π that results
from applying Π on Pt, is a solution to Pt.

Progressive Generalized Planning with
Landmark Counting Heuristic

The Progressive Generalized Planner (PGP) (Segovia-
Aguas et al. 2022) follows a GP as heuristic search ap-
proach (Segovia-Aguas, Jiménez, and Jonsson 2021), where

the solution space is represented with a Random-Access Ma-
chine (RAM), that uses up to n program lines and |Z| point-
ers. This representation to GP is denoted as Pn,Z , and re-
quires to update the shared domain with new actions from
the RAM, and new state variables that stand for the pointers
as introduced in Segovia-Aguas et al. (2022).

The two orthogonal contributions of this planner, com-
pared to previous GP as heuristic search approaches, are the
landmark counting heuristic to GP, and a method that pro-
gressively processes the planning instances in Pn,Z .

Regarding the heuristic, we implement the back-chaining
LAMA algorithm for finding fact landmarks and orderings
between landmarks (Richter and Westphal 2010). Briefly we
start from a set of known landmarks, and find new landmarks
that hold in any plan before an already known landmark may
become true. The landmark counting heuristic for a given
state s and trace π is formalized as:

fLM (s, π) = |(LM \Reached(s, π)) ∪RAgain(s, π)|,
(1)

where LM is whole set of landmark in the given instance,
Reached(s, π) is how many landmarks have been reached
with the given ordering constraints, and RAgain(s, π) is the
set of previously reached landmarks that are required again
for solving the problem. Then, Eq. 1 can be used for guiding
a search in the GP problem Pn,Z by defining a new evalua-
tion function:

fLM (Π,Pn,Z) =
∑
t

fLM (Π, Pt), (2)

for each Pt ∈ Pn,Z , where fLM (Π, Pt) = fLM (s, π)
such that π is the sequential plan and s is the last state
reached that results from executing Π on Pt, and fLM (s, π)
is the landmark counting heuristic defined in Eq. 1. The eval-
uation function defined in Eq. 2 is enhanced with the concept
of pointer landmarks, which adds new landmarks and or-
dering constraints to progress in the landmark graph (check
Segovia-Aguas et al. (2022) for more details).

Regarding with processing planning instances progres-
sively, PGP keeps a subset of the classical planning instances
called the active instances, that initially contains only the
first classical planning instance of the GP problem. PGP
finds a program that solves the full set of active instances,



it validates that program on the remaining instances of the
GP problem, and augments the set of active instances with
the first instance for which the program fails. The procedure
is repeated until PGP finds a program that solves all the in-
stances in the GP problem. PGP can be understood as a vari-
ant of counterexample-guided search (Seipp and Helmert
2018).

The main advantage of PGP is that solutions correspond
to programs that are deterministic finite automata, which
make them very suitable to solve very large planning in-
stances. However, the submission to the IPC 2023 - Learn-
ing Track was just posed as a submission example and has
some strong limitations like, the number of lines, that is fixed
for all domains (n = 15), so if a solution requires more lines
it will not be found; the input language does not accept cer-
tain language features, e.g., hierarchical typing or the use
of constants in the action schemas; assumes that if goal in-
formation is relevant to generalize, this will be provided in
the initial state, which is not the case by default planning
instances; as well as it assumes that all domains have poly-
nomial -time solutions.
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son, A. 2022. Scaling-up generalized planning as heuristic
search with landmarks. In Proceedings of the International
Symposium on Combinatorial Search, volume 15, 171–179.
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