
Vanir: Learning and Executing Width-based Hierarchical Policies

Dominik Drexler
Linköping University, Linköping, Sweden

dominik.drexler@liu.se

Abstract

Vanir describes one of the family trees of the Norse Gods
in Nordic mythology. Likewise, our planner uses trees where
each node represents a subtask with polynomial complexity
based on the problem width, and the children of each node
represent a decomposition into simpler subtasks.

1 Introduction
The foundation of Vanir is the mathematical notion of plan-
ning width (Lipovetzky and Geffner 2012) and the language
of policy sketches (Bonet and Geffner 2021). Vanir consists
of two components: a learner and a planner (Drexler, Seipp,
and Geffner 2023). The learner takes as input a collection of
classical planning instances and outputs a hierarchical policy
which is a single-rooted tree where the children of each node
represents a policy sketch that decomposes the problems at
the root into simpler subproblems measured by the notion
of planning width. The planner takes as input a hierarchical
policy and a problem instance and exploits the hierarchical
policy to reach the goal without searching.

2 Learning Hierarchical Policies
A hierarchical policy Π is a rooted tree (Drexler, Seipp, and
Geffner 2023). Every node n in the tree represents a class of
problems Qn and a sketch rule r(n). The child nodes n′ of a
node n form a problem decomposition in the form a sketch
R(n) decreasing the width of Qn. There is a single root node
nr that represents the class of problems Qnr = Q and the
sketch rule r(nr) = {¬G} 7→ {G} where G is a Boolean
feature that is true in every goal state of P ∈ Qnr and false
otherwise. The width of Qnr is usually unbounded.

Vanir learns a hierarchical policy Π for a class of prob-
lems Q by iteratively reducing the width of subproblems
(Drexler, Seipp, and Geffner 2023). Initially, the tree of the
hierarchical policy Π contains a single root node nr. Then,
Vanir iteratively decomposes the class of problems Qn of a
leaf node n into children n′ with classes Qn′ while decreas-
ing the width by 1 except for the first problem decomposi-
tion, which usually goes from unbounded width to width 2.
The resulting tree has a depth of at most 3.

Drexler, Seipp, and Geffner (2023) addressed the prob-
lem of learning a sketch R for a class of problems Q by
finding the best truth assignment of a propositional theory.

Their method builds on top of a previous method of learn-
ing sketches (Drexler, Seipp, and Geffner 2022) with a slight
change in the semantics that considers sketch rules indepen-
dent of each other and is required for hierarchical execution.
Next, we show the propositional theory and discuss imple-
mentational details.

2.1 Encoding for Learning Sketches
From a set of training instances P ⊆ Q, we derive a
set of domain-general features F using the DLPlan library
(Drexler, Francès, and Seipp 2022). Using the training in-
stances P , the set of features F , width k, and maximum
number of sketch rules m, we construct the propositional
theory T (P,F , k,m) as defined by Drexler, Seipp, and
Geffner (2023). To describe its variables, we use the follow-
ing symbols: s, s′ range over all states in the training set, f
ranges over all features in F , v ranges over all feature con-
ditions or ‘?’, v′ ranges over all feature effects or ‘?’, and i
ranges over all rule indices 1, . . . ,m. The propositional vari-
ables in T (P,F , k,m) are:

• select(f ): feature f is included in Φ

• cond(i, f, v): rule i has condition v for f
• eff (i, f, v′): rule i has effect v′ for f
• subgoal(s, t , i): rule i has subgoal t of width ≤ k in s

• sat rule(s, s′, i): pair [s, s′] is compatible with rule i

• sat cond(s, i): state s satisfies conditions of rule i

• r -reach(s): state s is in SR(P )

To describe the constraints in T (P,F , k,m), we use the
same symbols as above, with the difference that s now only
ranges over all alive states. In addition, t ranges over subgoal
tuples with width at most k in s, dist(s, s′) is the shortest
distance from s to s′, dist(s, t) is the length of an admissible
chain that ends in subgoal tuple t for state s, S∗(s, t) are all
states that result from applying optimal plans from P [s, t] in
s. The constraints are

C1 cond(i, f, v) ∨ eff (i, f, v′) → select(f ), unique v, v′,
C2 r -reach(s) → ∨isat cond(s, i),
C3 r -reach(s) ∧ sat cond(s, i) → ∨tsubgoal(s, t , i),
C4 r -reach(s0) for initial state s0,
C5 r -reach(s) ∧ sat rule(s, s′, i) → r -reach(s′),
C6 subgoal(s, t , i) → ∧s′∈S∗(s,t)sat rule(s, s′, i),



C7 sat rule(s, s′, i) → ∨dist(s,t)≤dist(s,s′)subgoal(s, t , i),
C8 sat rule(s, s′, i) ↔ [s, s′] compatible with rule i,
C9 sat cond(s, i) ↔ s satisfies conditions of rule i, and

C10 the collection of m rules is acyclic.
C11 min

∑
f∈F 1{select(f )} · complexity(f)

2.2 Incremental Learning
The encoding scales polynomially in the size of the in-
stances and exponentially in k. Hence, using small instances
can make learning substantially faster. To automate the se-
lection of small instances from all training instances P to
form a propositional theory T (P,F , k,m), we use the same
method from previous work on learning policy sketches
(Drexler, Seipp, and Geffner 2022). The method orders the
training instances increasingly by their number of states and,
in each step, adds the smallest instance to the propositional
theory where the current sketch fails to find a new sketch
R until R solves all training instances. When adding an in-
stance that is larger than all others in the training set, it re-
moves all smaller instances. We encode the propositional
theory as an answer set program (ASP) and solve it using
the Clingo solver (Gebser et al. 2019).

2.3 Data Augmentation
Every problem instance P ∈ P comes with a single initial
state s0. However, in many domains several states s′ reach-
able from the initial s0 can be the initial state s′0 for another
instance P ′ ∈ P . Therefore, from P we generate a closed
set of instances P∗ such that every P ∈ P is also in P∗ and
additionally if s′ is reachable from the initial state s0 ∈ P
then the problem P ′ with initial state s′ is also in P∗.

2.4 Exploiting Indistinguishability of Constraints
We exploit indistinguishable constraints to reduce the en-
coding size (Francès, Bonet, and Geffner 2021). The method
defines an equivalence relation over the state pairs where
two state pairs [s, s′] and [t, t′] are in the same equiva-
lence class iff they are indistinguishable by feature condi-
tions evaluated in s and t, and indistinguishable by feature
changes evaluated in [s, s′] and [t, t′].

2.5 Feature Complexity
The feature complexity is defined as the number of applied
grammar rules. When the instances are extremely small, for
example, if the instance consists of single objects of a spe-
cific type, then Boolean features that map to true or false
often suffice to find a sketch. However, the generalization
capabilities of Boolean features to larger instances are usu-
ally smaller in comparison to their numerical counterpart.
Hence, we penalize the selection of Boolean features with an
additional cost of 1 which often allows generalization from
much smaller instances.

3 Executing Hierarchical Policies
The execution of a hierarchical policy follows its hierarchi-
cal structure and requires no search at all.

3.1 Execution of Hierarchical Policies
It follows the definition of the execution of a hierarchical
policy Π by Drexler, Seipp, and Geffner (2023). A hierarchi-
cal policy Π is executed on a problem P ∈ Q by making use
of a stack with entries ⟨s, n⟩, where s is a state from P and
n is a node in Π. The execution also tracks a current state s′.
During the execution of the policy, the entries ⟨s, n⟩ in the
stack at any point describe the subproblems P [s,Gr(s)] that
are being solved, where r = r(n). Initially, the stack con-
tains the pair ⟨s0, nr⟩ where s0 is the initial state of P and
nr is the root node of Π, and the current state is s′ := s0.
Then the execution considers three cases iteratively until the
stack becomes empty:

1. If the top stack entry is ⟨s, n⟩, the current state s′ is not
in Gr(s) for r = r(n), and n is not a leaf node, a (any)
child n′ of n is chosen with rule r(n′) whose condition is
true in s′. Then the entry ⟨s′, n′⟩ is pushed onto the stack
without changing the current state s′.

2. If the top stack entry is ⟨s, n⟩, s′ is not in Gr(s) for r =
r(n), and n is a leaf node, then an applicable action a
in s′, that will be equal to s, is selected and applied in
s′ for obtaining a state s′′ that is in Gr(s) (this must be
possible because subproblem P [s,Gr(s)] has width 0).
The current state is set to s′′.

3. If the top stack entry is ⟨s, n⟩ and s′ is Gr(s) for r = r(n),
then the entry is popped from the stack without changing
the current state s′.

4 Analysis of the Competition Results
In this section, we analyze the results of the competition.
First, we present whether the learning succeeded or failed
and provide the reason if it failed for each planning domain
that was used in the competition. Second, we describe im-
plementational issues together with their fixes and further
improvements. Last, we present the competition results with
the reevaluation of Vanir after fixing the issues.

4.1 Per-domain Analysis of the Learning Step
In the competition, there were 10 domains used from previ-
ous IPCs. Vanir learned domain control knowledge in Ferry,
Miconic, and Rovers. It follows a summary of the learning
step on each of the domains.

• Blocksworld: The learner ran out of memory.
• Childsnack: The learner ran out of time.
• Ferry: The learner returned a valid hierarchical policy for

the training instances.
• Floortile: The learner ran out of time.
• Miconic: The learner returned a valid hierarchical policy

for the training instances.
• Rovers: The learner returned an “incomplete” hierarchi-

cal policy for the training instances. We say that a hier-
archical policy is incomplete for a class of problems Q if
constraints 1 and 2 of a valid hierarchical policy for Q are
satisfied. However, the width w(Qn) of a leaf node n can
be greater than 0. In this domain, the decomposition at a



Baselines Competitors

LAMA FDSS SMAC ASNets GOFAI HUZAR Muninn Vanir

Blocksworld 47.9 49.4 31.5 4.6 46.4 39.3 40.6 47.9
Childsnack 26.2 35.4 20.2 0.0 26.5 22.0 11.0 26.2
Ferry 64.0 61.5 64.4 – 58.5 58.7 42.1 76.3
Floortile 12.0 22.7 24.7 – 34.4 21.3 0.0 11.0
Miconic 84.4 89.6 52.3 7.2 81.4 72.4 30.0 75.2
Rovers 66.8 64.0 58.1 6.5 54.4 60.0 14.2 66.8
Satellite 87.3 88.7 71.0 – 74.0 79.9 16.0 87.4
Sokoban 37.7 39.0 30.8 0.0 38.4 28.1 24.3 37.7
Spanner 30.0 60.7 30.0 8.9 30.0 30.0 32.0 30.0
Transport 61.4 63.0 62.7 2.0 64.5 55.4 16.2 61.4

Sum 517.6 574.1 445.7 29.1 508.5 467.0 226.3 519.9

Table 1: Planning step: the quality scores from the competition after the reevaluation of Vanir.

leaf failed because no sketch exists for the generated pool
of features.

• Satellite: The learner ran out of memory.
• Sokoban: The learner returned an incomplete hierarchical

policy that is valid on a small subset of training instances.
This was possible because we removed large instances for
which solving the logic program is too complicated.

• Spanner: The learner ran out of time.
• Transport: The learner ran out of time.

4.2 Post-competition Fixes and Improvements
We observed the following issues in the submission of Vanir
to the competition.
• In the competition, the learning system spawned 32

threads to solve the propositional theory, but only 1 CPU
core was available. After the competition, we reduced the
number of threads to 1.

• In the competition, the planning system crashed before
running the backoff planner LAMA (Richter and West-
phal 2010) in some cases where no domain control knowl-
edge was generated. After the competition, we allow the
backoff planner to run if no domain control knowledge
was generated.

In addition to the issues above, we plan to integrate the fol-
lowing improvements in the future.
• For incomplete hierarchical policies such as the one

learned in rovers, running IW(k) search in a leaf node n
with width w(Qn) equal to k is possible. This change al-
lows also using incomplete hierarchical policies for solv-
ing planning tasks.

4.3 Reevaluation of the Planning Step
Table 1 shows the results after reevaluation of Vanir after fix-
ing the issues from above. We used the same resource lim-
its and ran our experiments on the same hardware, i.e., 24
hours and 32 GiB memory limits for learning, and 30 min-
utes and 8 GiB memory limits for planning. Note that Vanir
learns a valid hierarchical policy for the training instances in

Ferry and Miconic. In Ferry, we observe that Vanir receives a
much higher quality score (76.3) than the other competitors.
In Miconic, Vanir solves all instances but produces worse
plans and obtains a slightly lower quality score (75.2) than
the other competitors. In the other domains, we get simi-
lar results as the baseline LAMA because this is the backoff
planner. Finally, Vanir receives the highest total quality score
among all competitors (519.9).

References
Bonet, B., and Geffner, H. 2021. General policies, repre-
sentations, and planning width. In Proc. AAAI 2021, 11764–
11773.
Drexler, D.; Francès, G.; and Seipp, J. 2022. Description
logics state features for planning (DLPlan). https://doi.org/
10.5281/zenodo.5826139.
Drexler, D.; Seipp, J.; and Geffner, H. 2022. Learning
sketches for decomposing planning problems into subprob-
lems of bounded width. In Proc. ICAPS 2022, 62–70.
Drexler, D.; Seipp, J.; and Geffner, H. 2023. Learning hier-
archical policies by iteratively reducing the width of sketch
rules. In Proc. KR 2023.
Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning
general planning policies from small examples without su-
pervision. In Proc. AAAI 2021, 11801–11808.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming 19:27–82.
Lipovetzky, N., and Geffner, H. 2012. Width and serial-
ization of classical planning problems. In Proc. ECAI 2012,
540–545.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

https://doi.org/10.5281/zenodo.5826139
https://doi.org/10.5281/zenodo.5826139

	Introduction
	Learning Hierarchical Policies
	Encoding for Learning Sketches
	Incremental Learning
	Data Augmentation
	Exploiting Indistinguishability of Constraints
	Feature Complexity

	Executing Hierarchical Policies
	Execution of Hierarchical Policies

	Analysis of the Competition Results
	Per-domain Analysis of the Learning Step
	Post-competition Fixes and Improvements
	Reevaluation of the Planning Step


